Abstract
This paper presents a new semantic sparse recoding method to generate more descriptive and robust representation of visual content for image applications. Although the visual bag-of-words (BOW) representation has been reported to achieve promising results in different image applications, its visual codebook is completely learnt from low-level visual features using quantization techniques and thus the so-called semantic gap remains unbridgeable. To handle such challenging issue, we utilize the annotations (predicted by algorithms or shared by users) of all the images to improve the original visual BOW representation. This is further formulated as a sparse coding problem so that the noise issue induced by the inaccurate quantization of visual features can also be handled to some extent. By developing an efficient sparse coding algorithm, we successfully generate a new visual BOW representation for image applications. Since such sparse coding has actually incorporated the high-level semantic information into the original visual codebook, we thus consider it as semantic sparse recoding of the visual content. Finally, we apply our semantic sparse recoding method to automatic image annotation and social image classification. The experimental results on several benchmark datasets show the promising performance of our semantic sparse recoding method in these two image applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.