Abstract
Language models are crucial for many tasks in NLP (Natural Language Processing) and n-grams are the best way to build them. Huge effort is being invested in improving n-gram language models. By introducing external information (morphology, syntax, partitioning into documents, etc.) into the models a significant improvement can be achieved. The models can however be improved with no external information and smoothing is an excellent example of such an improvement.In this article we show another way of improving the models that also requires no external information. We examine patterns that can be found in large corpora by building semantic spaces (HAL, COALS, BEAGLE and others described in this article). These semantic spaces have never been tested in language modeling before. Our method uses semantic spaces and clustering to build classes for a class-based language model. The class-based model is then coupled with a standard n-gram model to create a very effective language model.Our experiments show that our models reduce the perplexity and improve the accuracy of n-gram language models with no external information added. Training of our models is fully unsupervised. Our models are very effective for inflectional languages, which are particularly hard to model. We show results for five different semantic spaces with different settings and different number of classes. The perplexity tests are accompanied with machine translation tests that prove the ability of proposed models to improve performance of a real-world application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.