Abstract
This article presents a new approach to automatically measure semantic similarity between spatial objects. It combines a description logic based knowledge base (an ontology) and a multi-layer neural network to simulate the human process of similarity perception. In the knowledge base, spatial concepts are organized hierarchically and are modelled by a set of features that best represent the spatial, temporal and descriptive attributes of the concepts, such as origin, shape and function. Water body ontology is used as a case study. The neural network was designed and human subjects' rankings on similarity of concept pairs were collected for data training, knowledge mining and result validation. The experiment shows that the proposed method achieves good performance in terms of both correlation and mean standard error analysis in measuring the similarity between neural network prediction and human subject ranking. The application of similarity measurement with respect to improving relevancy ranking of a semantic search engine is introduced at the end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.