Abstract

As the decision-making brain for power system operation, grid regulation and operation is a comprehensive decision-making control that combines a large amount of data, mechanism analysis, operating procedures and professional experience, and a new generation of artificial intelligence development ideas and evolution characterized by data-driven and knowledge-guided. The directions are very close. However, the current scheduling control is still based on experience and manual analysis. The massive and diverse data of the control center and the lack of logical models between the plans require a large amount of experience and knowledge associations by the control personnel. There are more repetitive human brain labor and relatively low intelligence. Therefore, deep learning is applied to the learning of power control knowledge, and a semantic understanding network based on deep Long Short Term Memory is proposed. It uses sequence labeling to extract in-depth semantic related information of different keywords and query questions, and finds key information about language problems in order to achieve fine-grained and precise query. Experiments show that the proposed network model is superior to the previous methods, and it achieves better performance in the joint extraction of fine-grained evaluation words and evaluation objects, extracts the key information and deep semantic information of query problems and corresponding cases, and realizes power scheduling based on voice interaction The model can be effectively applied in the field of power dispatching and solve a large number of problems in power dispatching and control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.