Abstract
Semantic segmentation is how to categorize objects in an image based on pixel color intensity. There is an implementation in the medical imaging. This article discusses semantic segmentation in retinal blood vessels. Retinal blood vessels consist of artery and vein. Arteryvenous segmentation is needed to detect diabetic retinopathy, hypertension, and artherosclerosis. The data for the experiment is Retinal Image vessel Tree Extraction (RITE). Data consists of 20 patches with a dimension of 128 × 128 × 3. The process for performing semantic segmentation consists of 3 method, create a Conventional Neural Network (CNN) model, pre-trained network, and training the network. The CNN model consists of 10 layers, 1 input layer image, 3 convolution layers, 2 Rectified Linear Units (ReLU), 1 Max pooling, 1 transposed convolution layer, 1 softmax and 1 pixel classification layer. The pre-trained network uses the optimization algorithm Stochastic Gradient Descent with Momentum (SGDM), Root Mean Square Propagation (RMSProp) and Adaptive Moment optimization (Adam). Various scenarios were tested to get optimal accuracy. The learning rate is 1e-3 and 1e-2. Minibatch size are 4,8,16,32,64, and 128. The maximum value of epoch is set to 100. The results show the highest accuracy of up to 98.35%
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.