Abstract

We present results on a novel hybrid semantic SMT model that incorporates the strengths of both semantic role labeling and phrase-based statistical machine translation. The approach avoids major complexity limitations via a two-pass architecture. The first pass is performed using a conventional phrase-based SMT model. The second pass is performed by a re-ordering strategy guided by shallow semantic parsers that produce both semantic frame and role labels. Evaluation on a Wall Street Journal newswire genre test set showed the hybrid model to yield an improvement of roughly half a point in BLEU score over a strong pure phrase-based SMT baseline -- to our knowledge, the first successful application of semantic role labeling to SMT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.