Abstract
Whilst mapping with UAVs has become an established tool for geodata acquisition in many domains, certain time-critical applications, such as crisis and disaster response, demand fast geodata processing pipelines rather than photogrammetric post-processing approaches. Based on our 3D-capable real-time mapping pipeline, this contribution presents not only an array of optimisations of the original implementation but also an extension towards understanding the image content with respect to land cover and object detection using machine learning. This paper (1) describes the pipeline in its entirety, (2) compares the performance of the semantic labelling and object detection models quantitatively and (3) showcases real-world experiments with qualitative evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.