Abstract
Abstract. Earth observation (EO) data cubes have revolutionized the way large volumes of EO data can be stored, accessed, and processed. However, users coming from application domains outside of traditional EO research still face some significant technical barriers when querying an EO data cube with the aim to infer knew knowledge about real world entities and events. They have to interpret EO data in order to give them meaning, which is an ill-posed problem that requires advanced expertise in the field of EO analytics. We propose a semantic querying framework in which users query the EO data cube through an ontology, rather than accessing the data values themselves. The ontology formalizes symbolic representations of real-world entities and events, which are mapped to data values in the EO data cube through a mapping component formulated by an EO expert. This takes away the need for users to be aware of the EO data and how to interpret them, and therefore lowers the technical barriers to extract valuable information from EO data. We implemented a proof-of-concept of our approach as an open-source Python package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.