Abstract
Both semantic and type-based query optimization rely on the idea that queries often exhibit non-trivial rewritings if the state space of the database is restricted. Despite their close connection, these two problems to date have always been studied separately. We present a unifying, logic-based framework for query optimization in the presence of data dependencies and type information. It builds upon the classical chase algorithm and extends existing query minimization techniques to considerably larger classes of queries and dependencies. In particular, our setting requires chasing conjunctive queries (possibly with union and negation) in the presence of dependencies containing negation and disjunction. We study the applicability of the chase in this setting, develop novel conditions that guarantee its termination, identify fragments for which minimal query computation is always possible (w.r.t. a generic cost function), and investigate the complexity of related decision problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.