Abstract

Medical professionals rely on surgical video retrieval to discover relevant content within large numbers of videos for surgical education and knowledge transfer. However, the existing retrieval techniques often fail to obtain user-expected results since they ignore valuable semantics in surgical videos. The incorporation of rich semantics into video retrieval is challenging in terms of the hierarchical relationship modeling and coordination between coarse- and fine-grained semantics. To address these issues, this paper proposes a novel semantic-preserving surgical video retrieval (SPSVR) framework, which incorporates surgical phase and behavior semantics using a dual-level hashing module to capture their hierarchical relationship. This module preserves the semantics in binary hash codes by transforming the phase and behavior similarities into high- and low-level similarities in a shared Hamming space. The binary codes are optimized by performing a reconstruction task, a high-level similarity preservation task, and a low-level similarity preservation task, using a coordinated optimization strategy for efficient learning. A self-supervised learning scheme is adopted to capture behavior semantics from video clips so that the indexing of behaviors is unencumbered by fine-grained annotation and recognition. Experiments on four surgical video datasets for two different disciplines demonstrate the robust performance of the proposed framework. In addition, the results of the clinical validation experiments indicate the ability of the proposed method to retrieve the results expected by surgeons. The code can be found at https://github.com/trigger26/SPSVR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call