Abstract
The evolution of IoT has revolutionized industrial automation. Industrial devices at every level such as field devices, control devices, enterprise level devices etc., are connected to the Internet, where they can be accessed easily. It has significantly changed the way applications are developed on the industrial automation systems. It led to the paradigm shift where novel IoT application development tools such as Node-RED can be used to develop complex industrial applications as IoT orchestrations. However, in the current state, these applications are bound strictly to devices from specific vendors and ecosystems. They cannot be re-used with devices from other vendors and platforms, since the applications are not semantically interoperable. For this purpose, it is desirable to use platform-independent, vendor-neutral application templates for common automation tasks. However, in the current state in Node-RED such reusable and interoperable application templates cannot be developed. The interoperability problem at the data level can be addressed in IoT, using Semantic Web (SW) technologies. However, for an industrial engineer or an IoT application developer, SW technologies are not very easy to use. In order to enable efficient use of SW technologies to create interoperable IoT applications, novel IoT tools are required. For this purpose, in this paper we propose a novel semantic extension to the widely used Node-RED tool by introducing semantic definitions such as iot.schema.org semantic models into Node-RED. The tool guides a non-expert in semantic technologies such as a device vendor, a machine builder to configure the semantics of a device consistently. Moreover, it also enables an engineer, IoT application developer to design and develop semantically interoperable IoT applications with minimal effort. Our approach accelerates the application development process by introducing novel semantic application templates called Recipes in Node-RED. Using Recipes, complex application development tasks such as skill matching between Recipes and existing things can be automated. We will present the approach to perform automated skill matching on the Cloud or on the Edge of an automation system. We performed quantitative and qualitative evaluation of our approach to test the feasibility and scalability of the approach in real world scenarios. The results of the evaluation are presented and discussed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.