Abstract
Semantic diversity in Genetic Programming has proved to be highly beneficial in evolutionary search. We have witnessed a surge in the number of scientific works in the area, starting first in discrete spaces and moving then to continuous spaces. The vast majority of these works, however, have focused their attention on single-objective genetic programming paradigms, with a few exceptions focusing on Evolutionary Multi-objective Optimization (EMO). The latter works have used well-known robust algorithms, including the Non-dominated Sorting Genetic Algorithm II and the Strength Pareto Evolutionary Algorithm, both heavily influenced by the notion of Pareto dominance. These inspiring works led us to make a step forward in EMO by considering Multi-objective Evolutionary Algorithms Based on Decomposition (MOEA/D). We show, for the first time, how we can naturally promote semantic diversity in MOEA/D in Genetic Programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.