Abstract

Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words.

Highlights

  • Answers to the question of how meaning is derived from printed words advance our knowledge of basic reading processes, and provides insight into the storage and retrieval of semantic knowledge

  • The main objective of this study was to chart the semantic effects of words varying in concreteness and semantic neighborhood density (SND) by comparing word recognition response time (RT) across a series of tasks ranging in semantic engagement

  • Data from four different tasks that presumably vary in the extent to which they recruit semantic processing suggests that SND effects in visual recognition are robust

Read more

Summary

Introduction

Answers to the question of how meaning (semantics) is derived from printed words advance our knowledge of basic reading processes, and provides insight into the storage and retrieval of semantic knowledge. We examined the results of four experiments that compared recognition response time (RT) patterns (across tasks varying in explicit semantic demands) for concrete and abstract words. We examined these two word types within the context of a list that included a linguistic semantic variable, known as semantic neighborhood density (SND; Durda and Buchanan, 2008). The data from these experiments frame several proposals regarding how a comprehensive semantic theory may address distinctions between concrete versus abstract word representations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.