Abstract
Abstract This article correlates fine-grained semantic variability and change with measures of occurrence frequency to investigate whether a word’s degree of semantic change is sensitive to how often it is used. We show that this sensitivity can be detected within a short time span (i.e., 20 years), basing our analysis on a large corpus of German allowing for a high temporal resolution (i.e., per month). We measure semantic variability and change with the help of local semantic networks, combining elements of deep learning methodology and graph theory. Our micro-scale analysis complements previous macro-scale studies from the field of natural language processing, corroborating the finding that high token frequency has a negative effect on the degree of semantic change in a lexical item. We relate this relationship to the role of exemplars for establishing form–function pairings between words and their habitual usage contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.