Abstract
This dissertation addresses the problem of how to design a convolutional neural network (CNN) for giving semantic labels to the points on the ground given the satellite image coverage over the area and, for the ground truth, given the noisy labels in OpenStreetMap (OSM). This problem is made challenging by the fact that -- (1) Most of the images are likely to have been recorded from off-nadir viewpoints for the area of interest on the ground; (2) The user-supplied labels in OSM are frequently inaccurate and, not uncommonly, entirely missing; and (3) The size of the area covered on the ground must be large enough to possess any engineering utility. As this dissertation demonstrates, solving this problem requires that we first construct a DSM (Digital Surface Model) from a stereo fusion of the available images, and subsequently use the DSM to map the individual pixels in the satellite images to points on the ground. That creates an association between the pixels in the images and the noisy labels in OSM. The CNN-based solution we present yields a 4-8% improvement in the per-class segmentation IoU (Intersection over Union) scores compared to the traditional approaches that use the views independently of one another. The system we present is end-to-end automated, which facilitates comparing the classifiers trained directly on true orthophotos vis-`a-vis first training them on the off-nadir images and subsequently translating the predicted labels to geographical coordinates. This work also presents, for arguably the first time, an in-depth discussion of large-area image alignment and DSM construction using tens of true multi-date and multi-view WorldView-3 satellite images on a distributed OpenStack cloud computing platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.