Abstract
AbstractSimultaneous localization and mapping systems based on rigid scene assumptions cannot achieve reliable positioning and mapping in a complex environment with many moving objects. To solve this problem, this paper proposes a novel dynamic multi-object lidar odometry (MLO) system based on semantic object recognition technology. The proposed system enables the reliable localization of robots and semantic objects and the generation of long-term static maps in complex dynamic scenes. For ego-motion estimation, the proposed system extracts environmental features that take into account both semantic and geometric consistency constraints. Then, the filtered features can be robust to the semantic movable and unknown dynamic objects. In addition, we propose a new least-squares estimator that uses geometric object points and semantic box planes to realize the multi-object tracking (SGF-MOT) task robustly and precisely. In the mapping module, we implement dynamic semantic object detection using the absolute trajectory tracking list. By using static semantic objects and environmental features, the system eliminates accumulated localization errors and produces a purely static map. Experiments on the public KITTI dataset show that the proposed MLO system provides more accurate and robust object tracking performance and better real-time localization accuracy in complex scenes compared to existing technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.