Abstract

<span>Hyperspectral imaging (HSI) is composed of several hundred of narrow bands (NB) with high spectral correlation and is widely used in crop classification; thus induces time and space complexity, resulting in high computational overhead and Hughes phenomenon in processing these images. Dimensional reduction technique such as band selection and feature extraction plays an important part in enhancing performance of hyperspectral image classification. However, existing method are not efficient when put forth in noisy and mixed pixel environment with dynamic illumination and climatic condition. Here the proposed Sematic Feature Representation based HSI (SFR-HSI) crop classification method first employ Image Fusion (IF) method for finding meaningful features from raw HSI spectrally. Second, to extract inherent features that keeps spatially meaningful representation of different crops by eliminating shading elements. Then, the meaningful feature set are used for training using Support vector machine (SVM). Experiment outcome shows proposed HSI crop classification model achieves much better accuracies and Kappa coefficient performance. </span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.