Abstract

Information exchange among project stakeholders as part of structural life-cycle management has been gaining increasing interest in civil engineering. An integral part of structural life-cycle management is the operation and maintenance phase of structures, which is frequently associated with structural health monitoring (SHM). SHM has emerged as a novel methodology enabling the assessment of structural conditions by extracting information from structural response data and environmental data collected by sensors attached to structures. Representing a paradigm for exchanging information among stakeholders for structural life-cycle management, conventional building information, such as geometry, material and cost, is structured in so-called “building information models”. These models are defined within building information modeling (BIM) standards, such as the Industry Foundation Classes (IFC). Furthermore, in recent research efforts, IFC-compliant descriptions of “monitoring-related information”, i.e. information on SHM systems, have been reported. However, semantic descriptions of algorithms employed for SHM (“SHM-related algorithms”) have not yet received adequate research attention. This paper introduces a semantic description approach for modeling and integrating SHM-related algorithms into IFC-based building information models. Specifically, this study focuses on algorithms embedded into wireless sensor nodes for automatically processing SHM data on board. The semantic description approach is validated by describing a wireless SHM system installed on a laboratory test structure designed and implemented with an embedded algorithm (fast Fourier transform). The expected outcome of this study is essentially an extension to the current IFC schema enabling the description of SHM-related algorithms in conjunction with SHM systems and structures to be monitored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.