Abstract
In the last years, that amount of data stored in databases has increased extremely with the widespread use of databases and the rapid adoption of information systems and data warehouse technologies. It is a challenge to store and recover this increased data in an efficient method. This challenge will potentially appeal in database systems for two causes: storage cost reduction and performance improvement. Lossy compression in databases can return better compression ratios than lossless compression in general, but is rarely used due to the concern of losing data. For relational databases, using standard compression techniques like Gzip or Zip don't take advantage of the relational properties; since these techniques don't look at the nature of the data. In this paper, we propose a database compression system that takes advantage of attributes semantics and data-mining models to find frequent attribute pattern with maximum gain to perform compression of massive table's data. Furthermore, the suggested system relies on augmented vector quantization (AVQ) algorithm to achieve lossless compression version without losing any information. Extensive experiments were conducted and the results indicate the superiority of the system with respect to previously known techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.