Abstract
In this paper, we present a novel automated indexing and semantic labeling for broadcast soccer video sequences. The proposed method automatically extracts silent events from the video and classifies each event sequence into a concept by sequential association mining. The paper makes three new contributions in multimodal sports video indexing and summarization. First, we propose a novel hierarchical framework for soccer (football) video event sequence detection and classification. Unlike most existing video classification approaches, which focus on shot detection followed by shot-clustering for classification, the proposed scheme perform a top-down video scene classification which avoids shot clustering. This improves the classification accuracy and also maintains the temporal order of shots. Second, we compute the association for the events of each excitement clip using a priori mining algorithm. We pro- pose a novel sequential association distance to classify the association of the excitement clip into semantic concepts. For soccer video, we have considered goal scored by team-A, goal scored by team-B, goal saved by team-A, goal saved by team-B as semantic concepts. Third, the extracted excitement clips with semantic concept label helps us to summarize many hours of video to collection of soccer highlights such as goals, saves, corner kicks, etc. We show promising results, with correctly indexed soccer scenes, enabling structural and temporal analysis, such as video retrieval, highlight extraction, and video skimming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.