Abstract
The classification of semantically meaningful road markings in images is an important and safety critical task for autonomous and semi-autonomous vehicles. However, beyond simple lane markings, real-time detection and interpretation of road markings is challenging as images are subject to occlusions, partial observations, lighting changes and differing weather conditions. Additionally, there is high variation in the road markings between countries and regions, which makes interpretation difficult. In this work we present a three-fold approach to the semantic classification. Firstly, we employ a weakly supervised neural network to detect pixels belonging to road markings under different conditions. Subsequently, these pixels are classified into geometric primitives, from which we retrieve the semantic classes through a fast and parallel model-fitting algorithm that offers real-time performance. Unlike other methods in the literature that perform road marking classification independently, our proposed approach performs a joint classification leveraging the highly structured configurations that characterise urban traffic scenes. Consequently, we retrieve the underlying semantic classes under a variety of weather and lighting conditions as we demonstrate in our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.