Abstract

Abstract Code bloat is a phenomenon in Genetic Programming (GP) characterized by the increase in individual size during the evolutionary process without a corresponding improvement in fitness. Bloat negatively affects GP performance, since large individuals are more time consuming to evaluate and harder to interpret. In this paper, we propose two approaches for reducing GP code bloat based on a semantic approximation technique. The first approach replaces a random subtree in an individual by a smaller tree of approximate semantics. The second approach replaces a random subtree by a smaller tree that is semantically approximate to the desired semantics. We evaluated the proposed methods on a large number of regression problems. The experimental results showed that our methods help to significantly reduce code bloat and improve the performance of GP compared to standard GP and some recent bloat control methods in GP. Furthermore, the performance of the proposed approaches is competitive with the best machine learning technique among the four tested machine learning algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.