Abstract
The main objective of this research is to test the hypothesis that the two-step structural equation modelling (SEM) and artificial neural network (ANN) approach enables better in-depth research results as compared to the single-step SEM approach. This approach was used to determine which factors have statistically significant influence on extended use of enterprise resource planning (ERP) systems. The research model and the hypothesized relationships are based on the technology acceptance model (TAM). Majority of research on ERP acceptance has been conducted with SEM based research approaches. The purpose of this paper is to extend basic TAM research which is traditionally based on SEM technique with ANN approach. In the first step of the present research the SEM technique was used to determine which factors have statistically significant influence on extended use of the ERP systems; in the second step, ANN models were used to rank the relative influence of significant predictors obtained from SEM. The main finding of this research is that the use of multi-analytical two step SEM–ANN approach provides two important benefits. First, it enables additional verification of the results obtained by the SEM analysis. Second, this approach enables capturing not only linear but also complex nonlinear relationships between antecedents and dependent variables and more precise measure of relative influence of each predictor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.