Abstract

The aim of this in vitro study was to evaluate thermal effects on implant surfaces using a 445 nm diode laser (Eltech K-Laser Srl, Treviso, Italy) with different power settings and irradiation modalities. Fifteen new implants (Straumann, Basel, Switzerland) were irradiated to evaluate surface alteration. Each implant was divided into two zones: the anterior and posterior areas. The anterior coronal areas were irradiated with a distance of 1 mm between the optical fiber and the implant; the anterior apical ones were irradiated with the fiber in contact with the implant. Instead, the posterior surfaces of all of the implants were not irradiated and used as control surfaces. The protocol comprised two cycles of laser irradiation, lasting 30 s each, with a one-minute pause between them. Different power settings were tested: a 0.5 W pulsed beam (T-on 25 ms; T-off 25 ms), a 2 W continuous beam and a 3 W continuous beam. Lastly, through a scanning electron microscopy (SEM) analysis, dental implants’ surfaces were evaluated to investigate surface alterations. No surface alterations were detected using a 0.5 W laser beam with a pulsed mode at a distance of 1 mm. Using powers of irradiation of 2 W and 3 W with a continuous mode at 1 mm from the implant caused damage on the titanium surfaces. After the irradiation protocol was changed to using the fiber in contact with the implant, the surface alterations increased highly compared to the non-contact irradiation modality. The SEM results suggest that a power of irradiation of 0.5 W with a pulsed laser light emission mode, using an inactivated optical fiber placed 1 mm away from the implant, could be used in the treatment of peri-implantitis, since no implant surface alterations were detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.