Abstract

BackgroundThe purpose of the in vitro study is to investigate and compare the morphological features and the chemical stability in weight of two different polyurethane-based blends, Smart Track (LD30) and Exceed30 (EX30), used for orthodontic aligners manufacture before and after the oral usage.MethodsTwenty orthodontic aligners were randomly selected: 10 LD30 and 10 EX30, each group was divided in two subgroups, never used and intra-orally aged. By the employment of a Stereomicroscope, a section of 5 × 5 mm was cut from the buccal surface of the incisal region of each aligner. All samples were subjected to Scanning Electron Microscopy and Ageing tests in different solutions to simulate the hostility of the oral environment. The statistical method used was t-test.ResultsAt SEM images, LD30 appears more homogeneous in texture respect to EX30. However, after clinical usage, both materials show significant structural alterations: findings have been supported by higher magnifications at SEM, by which it is clearly to observe many superficial cracks cross through the polymer structures of LD30U, absent in never used samples. LD30U surface becomes also smoother due to the disappearance of most of the conglomerates, but at the same time also rougher while EX30U shows a greater irregularity and porosity in which large and deep cracks are also highlighted. Although these changes occur persistently, in the aging tests no significant weight loss from both materials has been found, confirming the initial hypothesis of a good chemical stability and safety of both polyurethane mixtures even in conditions of severe hostility.ConclusionLD30 is the expression of the technological evolution of EX30, this is made evident above all by its morphological architecture, more homogeneous and defined but also by the chemical stability that can be appreciated even in evident critic situations.

Highlights

  • The purpose of the in vitro study is to investigate and compare the morphological features and the chemical stability in weight of two different polyurethane-based blends, Smart Track (LD30) and Exceed30 (EX30), used for orthodontic aligners manufacture before and after the oral usage

  • Mixing polymers is an effective method of improving the mechanical properties of the polymers themselves: polyester, polyurethane and polypropylene are precisely the dominant materials in the polymer blends used for the production of transparent orthodontic aligners [6]

  • Changes in the gray scale are much more pronounced in EX30N than in LD30N samples assuming large and significant intervals of chromatic excursion caused by very different depths that seems to indicate the coexistence of differential densities on the same surface (Fig. 3)

Read more

Summary

Introduction

The purpose of the in vitro study is to investigate and compare the morphological features and the chemical stability in weight of two different polyurethane-based blends, Smart Track (LD30) and Exceed (EX30), used for orthodontic aligners manufacture before and after the oral usage. In the modern manufacturing technology of orthodontic appliances, thermoplastic polymers are widely used as main materials due to their advantageous chemical, optical and mechanical properties, such as biocompatibility, translucency and transparency, high elasticity and good. Polymeric materials owe their evolution to the development of modern synthetic chemistry in the eighteenth century, so they are considered relatively recent materials. By a structural point of view, the crystalline domains act as a reinforcing grid, like in a composite material, improving the performance of the polymer over a wide range of temperatures These are known as semicrystalline polymers since they maintain in their structure amorphous regions. It is essential to understand what is the perfect balance between these regions [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call