Abstract

Indoor location estimation based on Wi-Fi has attracted more and more attention from both research and industry fields. It brings two significant challenges. One is requiring a vast amount of labeled calibration data. The other is real-time training and testing for location estimation task. Traditional machine learning methods cannot get high performance in both aspects. This paper proposed a novel semi-supervised learning method SELM (semi-supervised extreme learning machine) and applied it to sparse calibrated location estimation. There are two advantages of the proposed SELM. First, it employs graph Laplacian regularization to import large number of unlabeled samples which can dramatically reduce labeled calibration samples. Second, it inherits the good property of ELM on extreme training and testing speed. Comparative experiments show that with same number of labeled samples, our method outperforms original ELM and back propagation (BP) network, especially in the case that the calibration data is very sparse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call