Abstract
Flow statistics is a basic task of passive measurement and has been widely used to characterize the state of the network.Adaptive Non-Linear Sampling (ANLS)is one of the most accurate and memory-efficient flow statistics method proposed recently. This paper studies the parameter setting problem for ANLS. A parameter self-tuning algorithm is proposed in this paper, which enlarges the parameter to a equilibrium tuning point and renormalizes the counter when counter overflows. It is demonstrated that the estimation error of ANLS with parameter self-tuning algorithm is improved by about 89 times for real trace,70 times for Pareto traffic scenario and 370 times for exponential traffic, while giving the same memory size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.