Abstract
In this paper, we introduce self-tuning histograms. Although similar in structure to traditional histograms, these histograms infer data distributions not by examining the data or a sample thereof, but by using feedback from the query execution engine about the actual selectivity of range selection operators to progressively refine the histogram. Since the cost of building and maintaining self-tuning histograms is independent of the data size, self-tuning histograms provide a remarkably inexpensive way to construct histograms for large data sets with little up-front costs. Self-tuning histograms are particularly attractive as an alternative to multi-dimensional traditional histograms that capture dependencies between attributes but are prohibitively expensive to build and maintain. In this paper, we describe the techniques for initializing and refining self-tuning histograms. Our experimental results show that self-tuning histograms provide a low-cost alternative to traditional multi-dimensional histograms with little loss of accuracy for data distributions with low to moderate skew.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.