Abstract

This paper presents the design and performance evaluation of an adaptive active control mechanism for vibration suppression inflexible beam structures. A cantilever beam system in transverse vibration is considered. First-order central finite difference methods are used to study the behaviour of the beam and develop a suitable test and verification platform. An active vibration control algorithm is developed within an adaptive control framework for broadband cancellation of vibration along the beam using a single-input multi-output (SIMO) control structure. The algorithm is implemented on a digital processor incorporating a digital signal processing (DSP) and transputer system. Simulation results verifying the performance of the algorithm in the suppression of vibration along the beam, using single-input single-output and SIMO control structures, are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.