Abstract

In this paper, we propose a self-triggered algorithm to solve a class of convex optimization problems with time-varying objective functions. It is known that the trajectory of the optimal solution can be asymptotically tracked by a continuous-time state update law. Unfortunately, implementing this requires continuous evaluation of the gradient and the inverse Hessian of the objective function which is not amenable to digital implementation. Alternatively, we draw inspiration from self-triggered control to propose a strategy that autonomously adapts the times at which it makes computations about the objective function, yielding a piece-wise affine state update law. The algorithm does so by predicting the temporal evolution of the gradient using known upper bounds on higher order derivatives of the objective function. Our proposed method guarantees convergence to arbitrarily small neighborhood of the optimal trajectory in finite time and without incurring Zeno behavior. We illustrate our framework with numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.