Abstract

Because of expensive cost or large time delay, quality data are difficult to obtain in many batch processes, while the ordinary process variables are measured online and recorded frequently. This paper intends to build a statistical quality prediction model for batch processes under limited quality data. Particularly, the self-training strategy is introduced and combined with the partial least-squares regression model. For multiphase batch processes, a phase-based self-training PLS model is developed for quality prediction in each phase of the process. The feasibility and effectiveness of the developed method is evaluated by an industrial injection molding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.