Abstract

Optomechanics is concerned with the coupling between optical cavities and mechanical resonators. Most early works are concentrated in the physics of optomechanics in the small-displacement regime and consider one single optical cavity mode participating in the optomechanical coupling. In this article, we focus on optomechanics in the extremely-large-amplitude regime in which a mechanical resonator is coupled with multiple optical cavity modes during the oscillation. We explicitly show that the mechanical resonator can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and can exhibit dynamical multistability. By analyzing the mechanical oscillation process and the accompanying variation of the optical cavity occupation, we develop an energy-balanced condition to ensure the stability of self-sustained oscillation. The effect of the mechanical nonlinearities on the dynamics of the mechanical resonator is also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call