Abstract

In this paper, we study the self-sustained irregular firing activity in 2-D small-world (SW) neural networks consisting of both excitatory and inhibitory neurons by computational modeling. For a proper proportion of unidirectional shortcuts, the stable self-sustained activity with irregular firing states indeed occurs in the considered network. By varying the shortcut density while keeping other system parameters fixed, different levels of irregular firing states, from weakly irregular to Poisson-like and burst firing states, are obtained in 2-D SW neural networks. It is also observed that this activity is sensitive to small perturbations, which might provide a possible mechanism for producing chaos. On the other hand, we find that several other system parameters, such as the network size and refractory period, have significant impact on this activity. Further simulation results show that the 2-D SW neural network can sustain such long-lasting firing behavior by using a smaller number of connections than the random neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.