Abstract

Designing cost-effective and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desired in hydrogen production from overall water splitting, but still suffers great challenges due to the sluggish catalytic OER/HER kinetics. In this paper, a surface/defect engineering strategy is developed to synthesize three-dimensional (3D) carbon foam (CF)-supported unique hierarchical Co3O4 nanowires@NiO nanosheets core–shell nanostructured catalyst (NiO@Co3O4/CF) with rich oxygen-vacancies as a novel bifunctional catalyst for alkaline water splitting electrolysis. Benefited from the synergy of the 3D hierarchical core–shell structure and rich oxygen vacancies, the as-obtained NiO@Co3O4/CF shows both excellent OER (η200 = 325 mV, η500 = 374 mV) and HER (η10 = 104 mV) activities with low Tafel slopes (64.26 mV dec−1 for OER and 109.14 mV dec−1 for HER, respectively) and outstanding stability. A simple overall water splitting electrolysis cell assembled by this bifunctional NiO@Co3O4/CF as both OER and HER catalysts requires only a cell voltage of 1.53 V to obtain the current density of 10 mA cm−2 and displays a long-term stability. This work has successfully developed an approach for rational design and novel synthesis of metal oxide hybrids as bifunctional electrocatalysts with high activity and stability for overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.