Abstract

Developing efficient electrocatalysts to promote the hydrogen evolution reaction (HER) is essential for a green and sustainable future energy supply. For practical applications, it is a challenge to achieve the self-assembly of electrocatalyst from microscopic to macroscopic scales. Herein, a facile strategy is proposed to fabricate a self-supporting electrocatalyst film (CNT-g-PSSCo/PW12 ) for HER by electrostatic interaction-induced self-assembly of cobalt polystyrene sulfonate-grafted carbon nanotube heterogeneous bottlebrush (CNT-g-PSSCo) and polyoxometalate (PW12 ). Co2+ ions of CNT-g-PSSCo can function as junctions for interconnecting neighboring bottlebrushes to form the 3D nanonetwork structure and enable electrostatic capture of negatively charged PW12 nanodots. Moreover, CNT backbones can provide highly conductive pathways to CNT-g-PSSCo/PW12 . Such a self-assembled CNT-g-PSSCo/PW12 displays a low overpotential of 31mV at a current density of 10mA cm-2 and a small Tafel slope of 25mV dec-1 , showing high efficiency toward HER. Furthermore, CNT-g-PSSCo/PW12 with a stable self-supporting film morphology exhibits long-term electrocatalytic stability over 1000 CV cycles without noticeable overpotential change in acidic media. The findings may provide a new avenue for constructing self-assembled functional nanonetwork materials with well-orchestrated structural hierarchy for many applications in energy, environment, catalysis, medicine, and others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.