Abstract

The design of efficient, low-cost, and stable electrocatalyst systems toward energy conversion is highly demanding for their practical use. Large scale electrolytic water splitting is considered as a promising strategy for clean and sustainable energy production. Herein, we report a self-supported NiFe layered double hydroxide (LDH)-NiSe electrocatalyst by stepwise surface-redox-etching of Ni foam (NF) through a hydrothermal process. The as-prepared NiFe LDH-NiSe/NF catalyst exhibits far better performance in alkaline water oxidation, proton reduction, and overall water splitting compared to NiSex/NF or NiFe LDH/NF. Only 240 mV overpotential is required to obtain a water oxidation current density of 100 mA cm-2, whereas the same for the hydrogen evolution reaction is 276 mV in 1.0 M KOH. The synergistic effect from NiSe and NiFe LDH leads to the evolution of a highly efficient catalyst system for water splitting by achieving 10 mA cm-2 current density at only 1.53 V in a two-electrode alkaline electrolyzer. In addition, the designed electrode produces stable performance for a long time even at higher current density to demonstrate its robustness and prospective as a real-life energy conversion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.