Abstract

Anomaly detection has been widely explored by training an out-of-distribution detector with only normal data for medical images. However, detecting local and subtle irregularities without prior knowledge of anomaly types brings challenges for lung CT-scan image anomaly detection. In this paper, we propose a self-supervised framework for learning representations of lung CT-scan images via both multi-scale cropping and simple masked attentive predicting, which is capable of constructing a powerful out-of-distribution detector. Firstly, we propose CropMixPaste, a self-supervised augmentation task for generating density shadow-like anomalies that encourage the model to detect local irregularities of lung CT-scan images. Then, we propose a self-supervised reconstruction block, named simple masked attentive predicting block (SMAPB), to better refine local features by predicting masked context information. Finally, the learned representations by self-supervised tasks are used to build an out-of-distribution detector. The results on real lung CT-scan datasets demonstrate the effectiveness and superiority of our proposed method compared with state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.