Abstract

Self-supervised learning has achieved remarkable success for learning speech representations from unlabeled data. The masking strategy plays an important role in the self-supervised learning algorithm. Most of the masking techniques operate at a frame level. In linguistics, phone is the smallest unit of sound. Hence, we believe that a masking technique that operates at a phoneme level will effectively encode the phonotactic and prosodic constraints of a spoken language, thus eventually benefits the downstream speech recognition tasks. In this work, we explore a novel segmental masking strategy. Specifically, we mask phonetically motivated speech segments according to the phonetic segmentation in an utterance. By doing so, we implicitly incorporate the properties of a spoken language, such as phonotactic constraints and duration of phonetic segments, into the pre-training. Through extensive experiments, we confirm that the segmental masking strategy consistently outperforms the frame-based masking counterpart. We also further investigate the effect of segmental masking unit size, i.e. phoneme, phoneme span, and lexical word. This work presents an important finding about masking strategy in speech representation learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.