Abstract
Monocular visual odometry (VO) based on deep learning methods is one of the most important research tasks in computer vision in recent decades. Unlike unsupervised and supervised methods, Self-supervised learning can add additional image information to improve the accuracy and robustness of the model without real labels, so the self-supervised visual odometry methods have received widespread attention. However, most self-supervised VO methods do not make full use of self-supervised signals, especially optical flow as a self-supervised signal. In this paper, we make full use of optical flow as a self-supervised signal, a new self-supervised network structure is proposed. This self-supervised network structure adds optical flow as a self-supervised signal to the basic cascaded VO estimation network. While providing additional information to train the camera pose estimation, the optical flow is used to generate mask to solve the occlusion problems that often occur in self-supervised models. We evaluated the self-supervised visual odometry model proposed in this paper on the KITTI dataset. Experiments show that our method has achieved good performance in depth estimation and camera pose estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.