Abstract
The performance of video analysis and indexing algorithms strongly depends on the type, content and recording characteristics of the analyzed video. Current video indexing approaches often make use of thresholding techniques or supervised learning which requires labeling of possibly large training sets. Furthermore, the application of the same training model or parameters might lead to a sub-optimal indexing accuracy for a given video. In this paper, we propose to use a novel self-supervised learning framework for robust video indexing to address this issue. Based on an initial classification result for a given video, the best features are selected by Adaboost and are then used to train SVM (support vector machine) classifiers, all on the given video. Finally, a specialized ensemble of classifiers is employed for the given video for decision making. Experimental results show that a state-of-the-art video cut detection approach can be significantly improved by the self-supervised learning approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.