Abstract

Self-stratification is an innovative one-step process used to design multi-functional coatings gathering simultaneously in a one-pot formulation the primer, the intermediate layer and the top coat properties. Many self-stratifying coatings contain oil-based epoxy resins but the literature is scarce in the development of “greener” solutions. In this work, silicone resins and bio-based epoxy resins were dissolved in various solvent blends, applied on a composite substrate and cured under different conditions to obtain stratified coatings. To reach a perfect stratification, the influence of various parameters including (i) the surface tension and the polarity of the resins, (ii) the solvents volatility, (iii) the curing temperature and (iv) the reactivity of the epoxy/amine reaction was studied by a systematic approach. In accordance with the literature, it was demonstrated that a large difference in surface energy and polarity favors resins separation. The volatility of the solvent blend was also shown to be a key factor in the stratification process. However, the predominant parameter, rarely taken into account, is the curing temperature, which impacts the cross-linking reaction of the epoxy resin. The increase in molecular weight (MW) of epoxy resins due to the cross-linking reaction favors the incompatibility between resins by increasing the difference in MW between epoxy and silicone resins. Thus, optimization of process conditions allowed the design of perfectly stratified bio-based epoxy/silicone coatings. The mechanism of film stratification was also elucidated thanks to in-situ analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.