Abstract

The sustainable application of cellulose nanofibers and ionic liquids (ILs) in the fabrication of transparent gel electrolyte actuators combined with thin electrodes remains to be explored. Accordingly, this study developed a new actuator on the basis of a 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers/IL/poly(dimethylsiloxane) (TOCN/IL/PDMS) transparent gel electrolyte. A casting method was employed to prepare the gel electrolyte film, and spray-coating was used to apply thin electrodes. On the basis of its electromechanical and electrochemical properties, the TOCN/IL/PDMS gel electrolyte actuator had high strain performance. The actuator's operational mechanism is based on both electrostatic double-layer capacitor (EDLC) and Faradaic capacitor mechanisms, with the EDLC mechanism having a stronger influence. The actuator's displacement-response frequency dependency was determined, and we simulated the obtained findings by using a double-layer charging kinetic model. The combined gel electrolyte and electrode resistance resulted in a favorable fit to the experimental data, as did the gel electrolyte resistance alone. The performance of the TOCN/IL/PDMS-electrolyte-based polymer actuators can be improved further by designing electrolytes (primarily) and electrodes to have high ionic and electrical conductivities. The films-which are flexible, robust, and transparent-may have potential as actuator materials within electronic and energy-conversion devices that are required to be wearable and transparent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.