Abstract

The stability of pure organic room-temperature phosphorescent (RTP) materials in air has been a research hotspot in recent years. Without crystallization or encapsulation, a new strategy was proposed to obtain self-stabilized organic RTP materials, based on a complete ionization of a photo-induced charge separation system. The ionization of aromatic phenol 4-carbazolyl salicylaldehyde (CSA) formed a stable H-bonding anion-cation radical structure and led to the completely amorphous CSA-I film. Phosphorescent lifetimes as long as 0.14 s at room temperature and with direct exposure to air were observed. The emission intensity was also increased by 21.5-fold. Such an amorphous RTP material reconciled the contradiction between phosphorescence stability and vapor permeability and has been successfully utilized for peroxide vapor detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call