Abstract

SelfSplit is a simple static mechanism to convert a sequential tree-search code into a parallel one. In this paradigm, tree-search is distributed among a set of identical workers, each of which is able to autonomously determine—without any communication with the other workers—the job parts it has to process. SelfSplit already proved quite effective in parallelizing Constraint Programming solvers. In the present paper we investigate the performance of SelfSplit when applied to a Mixed-Integer Linear Programming (MILP) solver. Both ad-hoc and general purpose MILP codes have been considered. Computational results show that SelfSplit, in spite of its simplicity, can achieve good speedups even in the MILP context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.