Abstract

Previous studies suggest that there may be a distinct relationship between spontaneous neural activity and subsequent or concurrent self-specific stimulus-induced activity. This study aims to test the impact of spontaneous activity as recorded in an eyes-open (EO) resting state as opposed to eyes-closed (EC) on self-specific versus non-self-specific auditory stimulus-induced activity in fMRI. In our first experiment we used self-specific stimuli comprised of the subject’s own name and non-self-specific stimuli comprised of a friend’s name and an unknown name, presented during EO versus EC baselines in a 3 name condition × 2 baseline design. In Experiment 2 we directly measured spontaneous activity in the absence of stimuli during EO versus EC to confirm a modulatory effect of the two baseline conditions in the regions found to show an interaction effect in Experiment 1. Spontaneous activity during EO was significantly higher than during EC in bilateral auditory cortex and non-self-specific names yielded stronger signal changes relative to EO baseline than to EC. In contrast, there was no difference in response to self-specific names relative to EO baseline than to EC despite the difference between spontaneous activity levels. These results support an impact of spontaneous activity on stimulus-induced activity, moreover an impact that depends on the high-level stimulus characteristic of self-specificity.

Highlights

  • Spontaneous neural activity is operationally defined as activity that is relatively stable during the so-called“resting state” in which a subject is physically and mentally at rest and exposed to a minimized stimulus array

  • This study aims to test the impact of spontaneous activity as recorded in an eyes-open (EO) resting state as opposed to eyes-closed (EC) on self-specific versus non-self-specific auditory stimulus-induced activity in fMRI

  • Interaction between EO versus EC baseline and self-specific versus non-self-specific stimulus-induced activity In Experiment 1 we investigated the effect of EO versus EC spontaneous activity on self-specific versus non-self-specific auditory stimulus-induced activity

Read more

Summary

Introduction

Spontaneous (or intrinsic) neural activity is operationally defined as activity that is relatively stable during the so-called“resting state” in which a subject is physically and mentally at rest (but awake) and exposed to a minimized stimulus array. The overlap is suggestive of some form of distinct relationship between spontaneous activity and self-specific stimulus processing, possibly including an interaction between spontaneous activity and self-specific stimuli that is different than for non-self-specific stimuli. Such possibilities remain hypothetical but attractive and open to further investigation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call