Abstract
It has been shown that many complex networks share self-similar properties. To reveal the ubiquitous characteristics that many real networks may have in common, we first improve the box covering algorithm and use it to measure several real industrial competition networks. As a result, we find that some real industrial competition networks illustrate the fractal properties. As the improved box covering algorithm could not reflect the structure characteristic of the industrial competitive network efficiently, and the scale of the network namely the average length path is not enough for quantifying the fractal properties, we use the clustering coefficient as the scale measure index and present a systematic analysis of some real industrial competition networks from the perspective of multifractal features. We find that many real industrial competition networks can also be characterized by the multifractal features. Finally, with a motif-hierarchical model, we simulate how the fractal structure of the industrial networks may be formed, and to some extent verify that the disassortative process is an important self-organizing mechanism in industry system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.