Abstract

We are concerned with a family of dissipative active scalar equation with velocity fields coupled via multiplier operators that can be of positive-order. We consider sub-critical values for the fractional diffusion and prove global well-posedness of solutions with small initial data belonging to a framework based on Fourier transform, namely Fourier–Besov–Morrey spaces. Since the smallness condition is with respect to the weak norm of this space, some initial data with large \(L^{2}\)-norm can be considered. Self-similar solutions are obtained depending on the homogeneity of the initial data and couplings. Also, we show that solutions are asymptotically self-similar at infinity. Our results can be applied in a unified way for a number of active scalar PDEs like 1D models on dislocation dynamics in crystals, Burgers’ equation, 2D vorticity equation, 2D generalized SQG, 3D magneto-geostrophic equations, among others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.