Abstract

We study generalized random fields which arise as rescaling limits of spatial configurations of uniformly scattered random balls as the mean radius of the balls tends to 0 or infinity. Assuming that the radius distribution has a power-law behavior, we prove that the centered and renormalized random balls field admits a limit with self-similarity properties. Our main result states that all self-similar, translation- and rotation-invariant Gaussian fields can be obtained through a unified zooming procedure starting from a random balls model. This approach has to be understood as a microscopic description of macroscopic properties. Under specific assumptions, we also get a Poisson-type asymptotic field. In addition to investigating stationarity and self-similarity properties, we give L 2-representations of the asymptotic generalized random fields viewed as continuous random linear functionals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call