Abstract

Self-similarity techniques are used to study pulse propagation in a normal-dispersion optical fiber amplifier with an arbitrary longitudinal gain profile. Analysis of the nonlinear Schrödinger equation that describes such an amplifier leads to an exact solution in the high-power limit that corresponds to a linearly chirped parabolic pulse. The self-similar scaling of the propagating pulse in the amplifier is found to be determined by the functional form of the gain profile, and the solution is confirmed by numerical simulations. The implications for achieving chirp-free pulses after compression of the amplifier output are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call