Abstract

Fractional-order derivatives have been widely used to describe the spiking patterns of neurons, without considering their self-similar dendritic structures. In this study, a self-similar resistor–capacitor network is proposed to relate the spiny dendritic structure with fractional spiking properties. In order to achieve this goal, two types of networks comprising recursively staggered resistors and capacitors were developed to model the functional properties of smooth and spiny dendrites, respectively. Their overall electrotonic properties can be described by fractional order temporal operators derived by Heaviside operational calculus. According to this operator method, spiking patterns of spiny dendrites were controlled by the standard 0.5-order derivative, whereas an exponential modulation term was added in the governing fractional operator of the smooth dendrites. The application of these fractional operators in a leaky integrate-and-fire model reveals that the dendritic spine plays an important role in alternations of the spiking properties, including first-spike latency, firing rate adaptation, and afterhyperpolarization conductance. Further, the multilevel assembly of this network indicates that the fractional spiking behaviors of spiny neurons might originate from their hierarchical substructures, thereby highlighting possible functional consequences of alterations to dendritic self-similarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.